Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.485
Filtrar
1.
Dev Cell ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38574731

RESUMO

Telomere dynamics are linked to aging hallmarks, and age-associated telomere loss fuels the development of epithelial cancers. In Apc-mutant mice, the onset of DNA damage associated with telomere dysfunction has been shown to accelerate adenoma initiation via unknown mechanisms. Here, we observed that Apc-mutant mice engineered to experience telomere dysfunction show accelerated adenoma formation resulting from augmented cell competition and clonal expansion. Mechanistically, telomere dysfunction induces the repression of EZH2, resulting in the derepression of Wnt antagonists, which causes the differentiation of adjacent stem cells and a relative growth advantage to Apc-deficient telomere dysfunctional cells. Correspondingly, in this mouse model, GSK3ß inhibition countered the actions of Wnt antagonists on intestinal stem cells, resulting in impaired adenoma formation of telomere dysfunctional Apc-mutant cells. Thus, telomere dysfunction contributes to cancer initiation through altered stem cell dynamics, identifying an interception strategy for human APC-mutant cancers with shortened telomeres.

2.
Mol Cell ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38593805

RESUMO

The Bloom syndrome (BLM) helicase is critical for alternative lengthening of telomeres (ALT), a homology-directed repair (HDR)-mediated telomere maintenance mechanism that is prevalent in cancers of mesenchymal origin. The DNA substrates that BLM engages to direct telomere recombination during ALT remain unknown. Here, we determine that BLM helicase acts on lagging strand telomere intermediates that occur specifically in ALT-positive cells to assemble a replication-associated DNA damage response. Loss of ATRX was permissive for BLM localization to ALT telomeres in S and G2, commensurate with the appearance of telomere C-strand-specific single-stranded DNA (ssDNA). DNA2 nuclease deficiency increased 5'-flap formation in a BLM-dependent manner, while telomere C-strand, but not G-strand, nicks promoted ALT. These findings define the seminal events in the ALT DNA damage response, linking aberrant telomeric lagging strand DNA replication with a BLM-directed HDR mechanism that sustains telomere length in a subset of human cancers.

3.
J Clin Med ; 13(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38610915

RESUMO

Background: Telomere attrition and mitochondrial dysfunction are two fundamental aspects of aging. Calorie restriction (CR) is the best strategy to postpone aging since it can enhance telomere attrition, boost antioxidant capacity, and lower the generation of reactive oxygen species (ROS). Since ROS is produced by mitochondria and can readily travel to cell nuclei, it is thought to be a crucial molecule for information transfer between mitochondria and cell nuclei. Important variables that affect the quality and functionality of sperm and may affect male reproductive health and fertility include telomere length, mitochondrial content, and the ratio of mitochondrial DNA (mtDNA) to nuclear DNA (nDNA). Telomere damage results from mitochondrial failure, whereas nuclear DNA remains unaffected. This research aims to investigate potential associations between these three variables and how they might relate to body mass index. Methods: Data were collected from 82 men who underwent IVF/ICSI at the University Hospital of Ioannina's IVF Unit in the Obstetrics and Gynecology Department. Evaluations included sperm morphology, sperm count, sperm motility, and participant history. To address this, male participants who were categorized into three body mass index (ΒΜΙ) groups-normal, overweight, and obese-had their sperm samples tested. Results: For both the normal and overweight groups, our results show a negative connection between relative telomere length and ΒΜI. As an illustration of a potential connection between mitochondrial health and telomere maintenance, a positive correlation was found for the obese group. Only the obese group's results were statistically significant (p < 0.05). More evidence that longer telomeres are associated with lower mitochondrial content can be found in the negative connection between telomere length and mitochondrial content in both the normal and overweight groups. However, the obese group showed a positive association. The data did not reach statistical significance for any of the three groups. These associations may affect sperm quality since telomere length and mitochondrial concentration are indicators of cellular integrity and health. Moreover, the ratio of mtDNA to nDNA was positively correlated with the relative telomere lengths of the obese group, but negatively correlated with the normal and overweight groups. In every group that was studied, the results were not statistically significant. According to this, male fertility may be negatively impacted by an imbalance in the copy number of the mitochondrial genome compared to the nuclear DNA in sperm. Conclusions: Essentially, the goal of our work is to determine whether mitochondria and telomere length in human sperm interact. Understanding these connections may aid in the explanation of some male infertility causes and possibly contribute to the creation of new treatment modalities for problems pertaining to reproductive health. The functional implications of these connections and their applications in therapeutic settings require further investigation.

4.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612707

RESUMO

Cancers harness embryonic programs to evade aging and promote survival. Normally, sequences at chromosome ends called telomeres shorten with cell division, serving as a countdown clock to limit cell replication. Therefore, a crucial aspect of cancerous transformation is avoiding replicative aging by activation of telomere repair programs. Mouse embryonic stem cells (mESCs) activate a transient expression of the gene Zscan4, which correlates with chromatin de-condensation and telomere extension. Head and neck squamous cell carcinoma (HNSCC) cancers reactivate ZSCAN4, which in turn regulates the phenotype of cancer stem cells (CSCs). Our study reveals a new role for human ZSCAN4 in facilitating functional histone H3 acetylation at telomere chromatin. Next-generation sequencing indicates ZSCAN4 enrichment at telomere chromatin. These changes correlate with ZSCAN4-induced histone H3 acetylation and telomere elongation, while CRISPR/Cas9 knockout of ZSCAN4 leads to reduced H3 acetylation and telomere shortening. Our study elucidates the intricate involvement of ZSCAN4 and its significant contribution to telomere chromatin remodeling. These findings suggest that ZSCAN4 induction serves as a novel link between 'stemness' and telomere maintenance. Targeting ZSCAN4 may offer new therapeutic approaches to effectively limit or enhance the replicative lifespan of stem cells and cancer cells.


Assuntos
Histonas , Telômero , Animais , Camundongos , Humanos , Acetilação , Telômero/genética , Cromatina/genética , Envelhecimento
5.
Proc Natl Acad Sci U S A ; 121(16): e2316651121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588418

RESUMO

Protecting chromosome ends from misrecognition as double-stranded (ds) DNA breaks is fundamental to eukaryotic viability. The protein complex shelterin prevents a DNA damage response at mammalian telomeres. Mammalian shelterin proteins TRF1 and TRF2 and their homologs in yeast and protozoa protect telomeric dsDNA. N-terminal homodimerization and C-terminal Myb-domain-mediated dsDNA binding are two structural hallmarks of end protection by TRF homologs. Yet our understanding of how Caenorhabditis elegans protects its telomeric dsDNA is limited. Recently identified C. elegans proteins TEBP-1 (also called DTN-1) and TEBP-2 (also called DTN-2) are functional homologs of TRF proteins, but how they bind DNA and whether or how they dimerize is not known. TEBP-1 and TEBP-2 harbor three Myb-containing domains (MCDs) and no obvious dimerization domain. We demonstrate biochemically that only the third MCD binds DNA. We solve the X-ray crystal structure of TEBP-2 MCD3 with telomeric dsDNA to reveal the structural mechanism of telomeric dsDNA protection in C. elegans. Mutagenesis of the DNA-binding site of TEBP-1 and TEBP-2 compromises DNA binding in vitro, and increases DNA damage signaling, lengthens telomeres, and decreases brood size in vivo. Via an X-ray crystal structure, biochemical validation of the dimerization interface, and SEC-MALS analysis, we demonstrate that MCD1 and MCD2 form a composite dimerization module that facilitates not only TEBP-1 and TEBP-2 homodimerization but also heterodimerization. These findings provide fundamental insights into C. elegans telomeric dsDNA protection and highlight how different eukaryotes have evolved distinct strategies to solve the chromosome end protection problem.


Assuntos
Proteínas de Caenorhabditis elegans , Proteínas de Ligação a Telômeros , Animais , Proteínas de Ligação a Telômeros/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dimerização , Proteína 1 de Ligação a Repetições Teloméricas/genética , Proteína 1 de Ligação a Repetições Teloméricas/química , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Ligação Proteica , Telômero/genética , Telômero/metabolismo , Complexo Shelterina , DNA/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas , Mamíferos/genética
6.
Biogerontology ; 25(2): 313-327, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581556

RESUMO

Improving human healthspan in our rapidly aging population has never been more imperative. Telomeres, protective "caps" at the ends of linear chromosomes, are essential for maintaining genome stability of eukaryotic genomes. Due to their physical location and the "end-replication problem" first envisioned by Dr. Alexey Olovnikov, telomeres shorten with cell division, the implications of which are remarkably profound. Telomeres are hallmarks and molecular drivers of aging, as well as fundamental integrating components of the cumulative effects of genetic, lifestyle, and environmental factors that erode telomere length over time. Ongoing telomere attrition and the resulting limit to replicative potential imposed by cellular senescence serves a powerful tumor suppressor function, and also underlies aging and a spectrum of age-related degenerative pathologies, including reduced fertility, dementias, cardiovascular disease and cancer. However, very little data exists regarding the extraordinary stressors and exposures associated with long-duration space exploration and eventual habitation of other planets, nor how such missions will influence telomeres, reproduction, health, disease risk, and aging. Here, we briefly review our current understanding, which has advanced significantly in recent years as a result of the NASA Twins Study, the most comprehensive evaluation of human health effects associated with spaceflight ever conducted. Thus, the Twins Study is at the forefront of personalized space medicine approaches for astronauts and sets the stage for subsequent missions. We also extrapolate from current understanding to future missions, highlighting potential biological and biochemical strategies that may enable human survival, and consider the prospect of longevity in the extreme environment of space.


Assuntos
Envelhecimento , Telômero , Humanos , Envelhecimento/genética , Senescência Celular , Longevidade/genética , Planetas , Estudos em Gêmeos como Assunto
7.
Mult Scler Relat Disord ; 86: 105607, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38631073

RESUMO

BACKGROUND: Aging-related processes contribute to neurodegeneration and disability in multiple sclerosis (MS). Biomarkers of biological aging such as leukocyte telomere length (LTL) could help personalise prognosis. Pregnancy has been shown to be protective against disability accumulation in women with MS, though it is unclear if this effect relates to aging mechanisms or LTL. OBJECTIVES: This study aimed to cross-sectionally characterise LTL in a cohort of individuals with MS, and to correlate LTL with disability severity and pregnancy history. METHODS: We extracted DNA from the whole blood of 501 people with MS in Melbourne, Australia. Expanded Disability Status Scale (EDSS) score and demographic data, as well as pregnancy history for 197 females, were obtained at sample collection. Additional data were extracted from the MSBase Registry. LTL was determined in base pairs (bp) using real-time quantitative polymerase chain reaction. RESULTS: A relationship between EDSS score and shorter LTL was robust to multivariable adjustment for demographic and clinical factors including chronological age, with an adjusted LTL reduction per 1.0 increase in EDSS of 97.1 bp (95 % CI = 9.7-184.5 bp, p = 0.030). Adjusted mediation analysis found chronological age accounted for 33.6 % of the relationship between LTL and EDSS score (p = 0.018). In females with pregnancy data, history of pregnancy was associated with older age (median 49.7 vs 33.0 years, p < 0.001). There were no significant relationships between adjusted LTL and any history of pregnancy (LTL increase of 65.3 bp, 95 % CI = -471.0-601.5 bp, p = 0.81) or number of completed pregnancies (LTL increase of 14.6 bp per pregnancy, 95 % CI = -170.3-199.6 bp, p = 0.87). CONCLUSIONS: The correlation between LTL and disability independent of chronological age and other factors points to a link between neurological reserve in MS and biological aging, and a potential research target for pathophysiological and therapeutic mechanisms. Although LTL did not significantly differ by pregnancy history, longitudinal analyses could help identify interactions with prospectively captured pregnancy effects.

8.
Plant J ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38493352

RESUMO

Deficiency in chromatin assembly factor-1 (CAF-1) in plants through dysfunction of its components, FASCIATA1 and 2 (FAS1, FAS2), leads to the specific and progressive loss of rDNA and telomere repeats in plants. This loss is attributed to defective repair mechanisms for the increased DNA breaks encountered during replication, a consequence of impaired replication-dependent chromatin assembly. In this study, we explore the role of KU70 in these processes. Our findings reveal that, although the rDNA copy number is reduced in ku70 mutants when compared with wild-type plants, it is not markedly affected by diverse KU70 status in fas1 mutants. This is consistent with our previous characterisation of rDNA loss in fas mutants as a consequence part of the single-strand annealing pathway of homology-dependent repair. In stark contrast to rDNA, KU70 dysfunction fully suppresses the loss of telomeres in fas1 plants and converts telomeres to their elongated and heterogeneous state typical for ku70 plants. We conclude that the alternative telomere lengthening pathway, known to be activated in the absence of KU70, overrides progressive telomere loss due to CAF-1 dysfunction.

9.
Food Sci Nutr ; 12(3): 1592-1604, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38455184

RESUMO

Mylife/Mylife100® is a dietary supplement consisting of black sesame seed, guava fruit, mangosteen aril, pennywort leaves, and soy protein. These edible plants contain multiple high-potential bioactive compounds exerting various vital biological functions including antioxidants which contribute to delaying the rate of telomere shortening. Telomere length is associated with cellular aging and age-related diseases. This study aimed to assess the efficacy of Mylife/Mylife100® on telomere length through a randomized, double-blind placebo-controlled trial. The trial assessed the alteration of leukocyte telomere length after 32 adults aged 50-65 years received either Mylife/Mylife100® or placebo (five capsules/day) for 8-week supplementation. The results demonstrated a significant increase in mean telomere length from baseline (6313 bp) to the 8-week supplementation period (6655 bp; p < 0.05) in the group receiving the product, whereas no significant change was observed in the placebo group. Additionally, the product group exhibited a significant improvement in plasma total antioxidant capacity levels compared to the placebo group (mean change, +35 vs -38; p = 0.006). This study also showed a significant correlation between telomere length and % CD4 + T cells (r = +0.325; p = 0.00003), % CD8 + T cells (r = +0.156; p = 0.048), and visceral fat (r = - 0.349; p = 0.000006). The findings suggest that consuming this dietary supplement (Mylife/Mylife100®) for 8 weeks has a positive effect on cellular aging by lengthening telomeres possible through their antioxidant capacities. Oxidative stress and cellular aging are underlying predisease mechanisms that might be alleviated by supplementing with this product.

10.
Genes (Basel) ; 15(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38540419

RESUMO

The initiation reactions of DNA synthesis are central processes during human chromosomal DNA replication. They are separated into two main processes: the initiation events at replication origins, the start of the leading strand synthesis for each replicon, and the numerous initiation events taking place during lagging strand DNA synthesis. In addition, a third mechanism is the re-initiation of DNA synthesis after replication fork stalling, which takes place when DNA lesions hinder the progression of DNA synthesis. The initiation of leading strand synthesis at replication origins is regulated at multiple levels, from the origin recognition to the assembly and activation of replicative helicase, the Cdc45-MCM2-7-GINS (CMG) complex. In addition, the multiple interactions of the CMG complex with the eukaryotic replicative DNA polymerases, DNA polymerase α-primase, DNA polymerase δ and ε, at replication forks play pivotal roles in the mechanism of the initiation reactions of leading and lagging strand DNA synthesis. These interactions are also important for the initiation of signalling at unperturbed and stalled replication forks, "replication stress" events, via ATR (ATM-Rad 3-related protein kinase). These processes are essential for the accurate transfer of the cells' genetic information to their daughters. Thus, failures and dysfunctions in these processes give rise to genome instability causing genetic diseases, including cancer. In their influential review "Hallmarks of Cancer: New Dimensions", Hanahan and Weinberg (2022) therefore call genome instability a fundamental function in the development process of cancer cells. In recent years, the understanding of the initiation processes and mechanisms of human DNA replication has made substantial progress at all levels, which will be discussed in the review.


Assuntos
Replicação do DNA , DNA , Humanos , DNA/genética , DNA/metabolismo , Replicação do DNA/genética , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Instabilidade Genômica
11.
Life (Basel) ; 14(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38541741

RESUMO

Cells are very important to researchers due to their use in various biological studies in in vitro and in vivo settings. This importance stems from the short lifespan of most cells under laboratory conditions, which can pose significant challenges, such as the difficulties associated with extraction from the source tissue, ethical concerns about separating cells from human or animal models, limited cell passage ability, and variation in results due to differences in the source of the obtained cells, among other issues. In general, cells in laboratory conditions can divide into a limited number, known as the Hayflick limit, due to telomere erosion at the end of each cellular cycle. Given this problem, researchers require cell lines that do not enter the senescence phase after a limited number of divisions. This can allow for more stable studies over time, prevent the laborious work associated with cell separation and repeated cultivation, and save time and money in research projects. The aim of this review is to summarize the function and effect of immortalization techniques, various methods, their advantages and disadvantages, and ultimately the application of immortalization and cell line production in various research fields.

12.
Biogerontology ; 25(2): 191-193, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38441835

RESUMO

In this special issue we commemorate theoretical biologist Alexey Olovnikov (1936-2022), whose theory of marginotomy has laid the foundation for the new field of biology that studies the molecular structure of telomeres and its role in health, longevity and aging. This issue contains a collection of reviews and research articles that discuss different aspects of telomere and telomerase research, ranging from telomere length dynamics in wild animal populations to problems of telomere maintenance during human space flight.

13.
Front Plant Sci ; 15: 1351613, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434436

RESUMO

NASA envisions a future where humans establish a thriving colony on the Moon by 2050. Plants will be essential for this endeavor, but little is known about their adaptation to extraterrestrial bodies. The capacity to grow plants in lunar regolith would represent a major step towards this goal by minimizing the reliance on resources transported from Earth. Recent studies reveal that Arabidopsis thaliana can germinate and grow on genuine lunar regolith as well as on lunar regolith simulant. However, plants arrest in vegetative development and activate a variety of stress response pathways, most notably the oxidative stress response. Telomeres are hotspots for oxidative damage in the genome and a marker of fitness in many organisms. Here we examine A. thaliana growth on a lunar regolith simulant and the impact of this resource on plant physiology and on telomere dynamics, telomerase enzyme activity and genome oxidation. We report that plants successfully set seed and generate a viable second plant generation if the lunar regolith simulant is pre-washed with an antioxidant cocktail. However, plants sustain a higher degree of genome oxidation and decreased biomass relative to conventional Earth soil cultivation. Moreover, telomerase activity substantially declines and telomeres shorten in plants grown in lunar regolith simulant, implying that genome integrity may not be sustainable over the long-term. Overcoming these challenges will be an important goal in ensuring success on the lunar frontier.

14.
FEBS Lett ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38445359

RESUMO

Eukaryotic telomeres are transcribed into the long noncoding RNA TERRA. A fraction of TERRA remains associated with telomeres by forming RNA:DNA hybrids dubbed telR-loops. TERRA and telR-loops are essential to promote telomere elongation in human cancer cells that maintain telomeres through a homology-directed repair pathway known as alternative lengthening of telomeres or ALT. However, TERRA and telR-loops compromise telomere integrity and cell viability if their levels are not finely tuned. The study of telomere transcription in ALT cells will enormously expand our understanding of the ALT mechanism and of how genome integrity is maintained. Moreover, telomere transcription, TERRA and telR-loops are likely to become exceptionally suited targets for the development of novel anti-cancer therapies.

15.
J Clin Invest ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451729

RESUMO

Development of effective strategies to manage the inevitable acquired resistance to osimertinib, an approved 3rd generation EGFR inhibitor for the treatment of EGFR mutant (EGFRm) non-small cell lung cancer (NSCLC), is urgently needed. This study reported that the DNA topoisomerase II (Topo II) inhibitors, doxorubicin and etoposide (VP-16) synergistically decreased cell survival with enhanced induction of DNA damage and apoptosis in osimertinib-resistant cells, suppressed the growth of osimertinib-resistant tumors, and delayed the emergence of osimertinib acquired resistance. Mechanistically, osimertinib decreased Topo IIα levels in EGFRm NSCLC cells by facilitating FBXW7-mediated proteasomal degradation, resulting in induction of DNA damage; these effects were lost in osimertinib-resistant cell lines possessing elevated levels of Topo IIα. Topo IIα elevation was also detected in the majority of EGFRm NSCLC tissues relapsed from EGFR-TKI treatment. Enforced expression of an ectopic TOP2A gene in sensitive EGFRm NSCLC cells conferred resistance to osimertinib, whereas knockdown of TOP2A in osimertinib-resistant cell lines restored their response to undergo osimertinib-induced DNA damage and apoptosis. Together, these results reveal an essential role of Topo IIα inhibition in mediating the therapeutic efficacy of osimertinib against EGFRm NSCLC, providing scientific rationale for targeting Topo II to manage acquired resistance to osimertinib.

16.
Genes (Basel) ; 15(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38397133

RESUMO

L1 elements can cause DNA damage and genomic variation via retrotransposition and the generation of endonuclease-dependent DNA breaks. These processes require L1 ORF2p protein that contains an endonuclease domain, which cuts genomic DNA, and a reverse transcriptase domain, which synthesizes cDNA. The complete impact of L1 enzymatic activities on genome stability and cellular function remains understudied, and the spectrum of L1-induced mutations, other than L1 insertions, is mostly unknown. Using an inducible system, we demonstrate that an ORF2p containing functional reverse transcriptase is sufficient to elicit DNA damage response even in the absence of the functional endonuclease. Using a TK/Neo reporter system that captures misrepaired DNA breaks, we demonstrate that L1 expression results in large genomic deletions that lack any signatures of L1 involvement. Using an in vitro cleavage assay, we demonstrate that L1 endonuclease efficiently cuts telomeric repeat sequences. These findings support that L1 could be an unrecognized source of disease-promoting genomic deletions, telomere dysfunction, and an underappreciated source of chronic RT-mediated DNA damage response in mammalian cells. Our findings expand the spectrum of biological processes that can be triggered by functional and nonfunctional L1s, which have impactful evolutionary- and health-relevant consequences.


Assuntos
Fenômenos Biológicos , Elementos Nucleotídeos Longos e Dispersos , Humanos , Animais , Elementos Nucleotídeos Longos e Dispersos/genética , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Células HeLa , Endonucleases/genética , Telômero/genética , Telômero/metabolismo , Reparo do DNA/genética , Mamíferos/genética
17.
Antioxidants (Basel) ; 13(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38397754

RESUMO

Lung cancer (LC) constitutes an important cause of death among patients with Chronic Obstructive Pulmonary Disease (COPD). Both diseases may share pathobiological mechanisms related to oxidative damage and cellular senescence. In this study, the potential value of leucocyte telomere length, a hallmark of aging, and 8-OHdG concentrations, indicative of oxidative DNA damage, as risk biomarkers of LC was evaluated in COPD patients three years prior to LC diagnosis. Relative telomere length measured using qPCR and serum levels of 8-OHdG were determined at the baseline in 99 COPD smokers (33 with LC and 66 age-matched COPD without LC as controls). Of these, 21 COPD with LC and 42 controls had the biomarkers measured 3 years before. Single nucleotide variants (SNVs) in TERT, RTEL, and NAF1 genes were also determined. COPD cases were evaluated, which showed greater telomere length (p < 0.001) and increased serum 8-OHdG levels (p = 0.004) three years prior to LC diagnosis compared to the controls. This relationship was confirmed at the time of LC diagnosis. No significant association was found between the studied SNVs in cases vs. controls. In conclusion, this preliminary study shows that longer leucocyte telomere length and increased 8-OHdG serum levels can be useful as early biomarkers of the risk for future lung cancer development among COPD patients.

18.
G3 (Bethesda) ; 14(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38366796

RESUMO

Aging is a multifactorial process that disturbs homeostasis, increases disease susceptibility, and ultimately results in death. Although the definitive set of molecular mechanisms responsible for aging remain to be discovered, epigenetic change over time is proving to be a promising piece of the puzzle. Several post-translational histone modifications have been linked to the maintenance of longevity. Here, we focus on lysine-36 of the replication-independent histone protein, H3.3 (H3.3K36). To interrogate the role of this residue in Drosophila developmental gene regulation, we generated a lysine-to-arginine mutant that blocks the activity of its cognate-modifying enzymes. We found that an H3.3BK36R mutation causes a significant reduction in adult lifespan, accompanied by dysregulation of the genomic and transcriptomic architecture. Transgenic co-expression of wild-type H3.3B completely rescues the longevity defect. Because H3.3 is known to accumulate in nondividing tissues, we carried out transcriptome profiling of young vs aged adult fly heads. The data show that loss of H3.3K36 results in age-dependent misexpression of NF-κB and other innate immune target genes, as well as defects in silencing of heterochromatin. We propose H3.3K36 maintains the postmitotic epigenomic landscape, supporting longevity by regulating both pericentric and telomeric retrotransposons and by suppressing aberrant immune signaling.


Assuntos
Drosophila , Histonas , Longevidade , Animais , Drosophila/genética , Drosophila/metabolismo , Heterocromatina , Histonas/genética , Histonas/metabolismo , Longevidade/genética , Lisina/metabolismo
19.
J Hered ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38366660

RESUMO

Geckos exhibit derived karyotypes without clear distinction between macrochromosomes and microchromosomes and intriguing diversity in sex determination mechanisms. We conducted cytogenetic analyses in six species from the genera Nephrurus, Phyllurus, and Saltuarius of the gecko family Carphodactylidae. We confirmed the presence of a female heterogametic system with markedly differentiated and heteromorphic sex chromosomes in all examined species, typically with the W chromosome notably larger than the Z chromosome. One species, Nephrurus cinctus, possesses unusual multiple Z1Z1Z2Z2/Z1Z2W sex chromosomes. The morphology of the sex chromosomes, along with repetitive DNA content, suggests that the differentiation or emergence of sex chromosomes occurred independently in the genus Phyllurus. Furthermore, our study unveils a case of spontaneous triploidy in a fully grown individual of Saltuarius cornutus (3n = 57) and explores its implications for reproduction in carphodactylid geckos. We revealed that most carphodactylids retain the putative ancestral gekkotan karyotype of 2n = 38, characterised by predominantly acrocentric chromosomes that gradually decrease in size. If present, biarmed chromosomes emerged through pericentric inversions, maintaining the chromosome (and centromere) numbers. However, Phyllurus platurus is a notable exception, with a karyotype of 2n = 22 chromosomes. Its eight pairs of bi-armed chromosomes were probably formed by Robertsonian fusions of acrocentric chromosomes. The family underscores a remarkable instance of evolutionary stability in chromosome numbers, followed by a profound transformation through parallel interchromosomal rearrangements. Our study highlights the need to continue generating cytogenetic data in order to test long-standing ideas about reproductive biology and the evolution of genome and sex determination.

20.
Front Oncol ; 14: 1322438, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333682

RESUMO

In order to avoid replicative senescence, tumor cells must acquire a telomere maintenance mechanism. Beside telomerase activation, a minority of tumors employs a recombinational mechanism called Alternative Lengthening of Telomeres (ALT). Several studies have investigated the potential ALT stimulation by inactivation of ATRX in tumor cells, obtaining contrasting results. Differently, since ALT can be viewed as a mechanism to overcome telomere shortening-mediated replicative senescence, we have investigated the effects of the inhibition of ATRX and p53 in aging primary fibroblasts. We observed that senescence leads to a phenotype that seems permissive for ALT activity, i.e. high levels of ALT-associated PML bodies (APB), telomeric damage and telomeric cohesion. On the other hand, RAD51 is highly repressed and thus telomeric recombination, upon which the ALT machinery relies, is almost absent. Silencing of ATRX greatly increases telomeric recombination in young cells, but is not able to overcome senescence-induced repression of homologous recombination. Conversely, inhibition of both p53 and ATRX leads to a phenotype reminiscent of some aspects of ALT activity, with a further increase of APB, a decrease of telomere shortening (and increased proliferation) and, above all, an increase of telomeric recombination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...